

NPN Power Silicon Transistor Die

Rev. V1

Features

- Available in commercial JANHCE and JANKCE MIL-PRF-19500/544
- Rad Tolerant to 100K rads (Si)
- Ideal for High Current Switching Applications

Electrical Characteristics (T_A = +25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	I_{C} = 100 mA dc, I_{B} = 0 $V_{(BR)}$		V dc	80	_
Emitter - Base Cutoff Current	$V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0$ $V_{EB} = 5.5 \text{ Vdc}, I_{C} = 0$	I _{EBO1} μΑ α		_	1.0 1.0
Collector - Emitter Cutoff Current	$V_{CE} = 60 \text{ V dc}, V_{BE} = 0$ $V_{CE} = 100 \text{ V dc}, V_{BE} = 0$	I _{CES1}		_	1.0 1.0
Collector - Emitter Cutoff Current	V _{CE} = 40 Vdc, I _B = 0	I _{CEO}	μA dc	_	50
Forward Current Transfer Ratio	I_C = 50 mA dc, V_{CE} = 5.0 Vdc 2N5152, 2N5152L 2N5154, 2N5154L I_C = 2.5 A dc, V_{CE} = 5.0 Vdc 2N5152, 2N5152L 2N5154, 2N5154L I_C = 5.0 Vdc	h _{FE1}	-	20 50 30 70 20	90 200
	2N5152, 2N5152L 2N5154, 2N5154L	h _{FE3}		40	
Collector - Emitter Saturation Voltage	I_C = 2.5 Adc, I_B = 250 mAdc I_C = 5.0 Adc, I_B = 500 mAdc	V _{CE(SAT)1} V _{CE(SAT)2}	V dc	_	0.75 1.50
Base - Emitter Voltage (nonsaturated)	$I_C = 2.5 \text{ A dc}, V_{CE} = 5.0 \text{ Vdc}$	V _{BE}	V dc	_	1.45
Emitter - Base Saturation Voltage	I_C = 2.5 A dc, I_B = 250 mA dc I_C = 5.0 A dc, I_B = 500 mA dc	V _{BE(SAT)1}	V dc	_	1.45 2.20
Collector-Emitter Cutoff Current	T_{C} = +150°C V_{CE} = 60 V dc, V_{BE} = -2 V dc	I _{CEX}	μA dc	_	25
Forward-Current Transfer Ratio	$T_C = -55^{\circ}C$ $V_{CE} = 5 \text{ V dc}, I_C = 2.5 \text{ A dc}$ $2N5152, 2N5152L$ $2N5154, 2N5154L$	h _{FE4}		15 25	

(Continued next page)

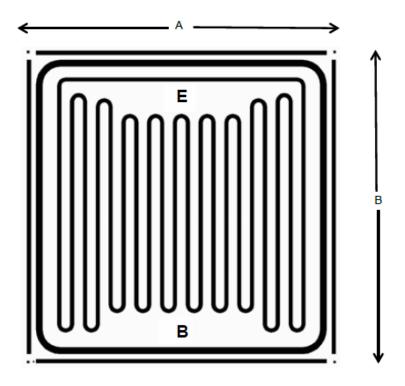
NPN Power Silicon Transistor Die

Rev. V1

Electrical Characteristics (T_A = +25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.	
Dynamic Characteristics						
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	I _C = 500 mA dc, V _{CE} = 5.0 Vdc, f = 10 MHz 2N5152, 2N5152L 2N5154, 2N5154L		-	6 7	_	
Common-Emitter, Small-Signal, Short-Circuit, Forward-Current Transfer Ratio	I _C = 100 mA dc, V _{CE} = 5.0 Vdc, f = 1 kHz 2N5152, 2N5152L 2N5154, 2N5154L	h _{FE}	-	20 50	_	
Open-Circuit Output Capacitance	V _{CB} = 10 Vdc, I _E = 0, f = 1 MHz	C _{obo}	pF	_	250	

Absolute Maximum Ratings (T_A = +25°C unless otherwise specified)


Ratings	Symbol	Value
Collector - Emitter Voltage	V_{CEO}	80 V dc
Collector - Base Voltage	V_{CBO}	100 V dc
Emitter - Base Voltage	V _{EBO}	5.5 V dc
Collector Current	Ic	2 A dc 10 A dc ⁽¹⁾
Reverse Pulse Energy (2)		15 mJ

NPN Power Silicon Transistor Die

Rev. V1

Outline Drawings (Die)

Backside: COLLECTOR

Dimensions					
LTR	Inches		Millimeters		
	Min	Max	Min	Max	
Α	.118	.122	3.0	3.1	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- Unless otherwise specified, tolerance is ±.005 (0.13 mm).
- 4. The physical characteristics of the die are:

Thickness: .014 inch (0.35 mm) nominal, tolerance is ±.0015 (0.04 mm).

Top metal: Aluminum, 54,000 Å minimum, 60,000 Å nominal.

Back metal: Gold 6,400 Å minimum, 8,000 Å nominal.

Back side: Collector.

Bonding pad: B = .060 x .012 inch (1.5 mm x 0.30 mm)

 $E = .050 \times 0.12 \text{ inch } (1.27 \text{ mm} \times 0.30 \text{ mm})$

FIGURE 5. JANHC and JANKC (E-version) die dimensions.

NPN Power Silicon Transistor Die

Rev. V1

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.