


Rev. V2

### **Features**

- Available in JAN, JANTX, and JANTXV per MIL-PRF-19500/144
- Metallurgically Bonded
- · Hermetically Sealed
- Double Plug Construction
- DO-34 Axial Leaded Package



# Absolute Maximum Ratings (T<sub>A</sub> = +25°C unless otherwise specified)

| Ratings                                                          | Symbol                            | Value           |
|------------------------------------------------------------------|-----------------------------------|-----------------|
| Breakdown Voltage                                                | $V_{BR}$                          | 75 V dc         |
| Working Peak Reverse Voltage                                     | $V_{RWM}$                         | 50 V (pk)       |
| Operating Current <sup>(1) (2)</sup><br>(T <sub>A</sub> = +75°C) | I <sub>O</sub>                    | 200 mA dc       |
| Peak Surge Current<br>(8.3 ms)                                   | I <sub>FSM</sub>                  | 2.0 A (pk)      |
| Junction & Storage Temperature Range                             | T <sub>J</sub> , T <sub>STG</sub> | -55°C to +175°C |



Rev. V2

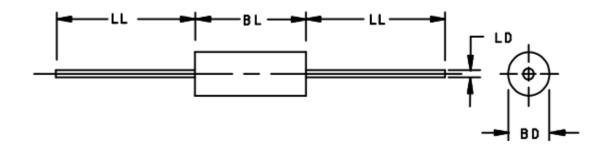
# Electrical Specifications @ $T_A = +25$ °C (unless otherwise specified)

| Parameter             | Test Conditions                                           | Symbol           | Units | Min. | Max. |
|-----------------------|-----------------------------------------------------------|------------------|-------|------|------|
| Forward Voltage       | I <sub>F</sub> = 10 mA dc                                 | V <sub>F1</sub>  | V dc  | _    | .8   |
| Breakdown Voltage     | I <sub>R</sub> = 5 μA dc                                  | V <sub>BR1</sub> | V dc  | 50   | _    |
| Reverse Current       | V <sub>R</sub> = 50 V dc                                  | I <sub>R1</sub>  | nA dc | _    | 100  |
| Reverse Current       | T <sub>A</sub> = +150°C; V <sub>R</sub> = 50 V dc         | I <sub>R2</sub>  | μA dc | _    | 100  |
| Forward Voltage       | $T_A = +150^{\circ}C; I_F = 10 \text{ mA dc}$             | V <sub>F2</sub>  | V dc  | _    | .7   |
| Breakdown Voltage     | $T_A = -55^{\circ}C; I_R = 10 \mu A dc$                   | $V_{BR2}$        | V dc  | 75   | _    |
| Capacitance           | $V_R$ = 0 V dc; f = 1 MHz; $V_{sig}$ = 50 m $V_{p-p}$ max | С                | pF    | _    | 2.0  |
| Reverse Recovery Time | I <sub>F</sub> = I <sub>RM</sub> =10 mA dc                | t <sub>rr</sub>  | ns    |      | 4    |

### **Thermal Characteristics**

| Types                                                                     | Symbol | Max. Value |
|---------------------------------------------------------------------------|--------|------------|
| Thermal Resistance Junction to Ambient (2)(3)                             | R₀JA   | 325 °C/W   |
| Thermal Resistance Junction to Lead <sup>(3)</sup> L = 3/8 inch (9.53 mm) | R₀JL   | 250 °C/W   |

<sup>(1)</sup> For temperature-current derating curve see figure 5.


<sup>(2)</sup> T<sub>A</sub> = +75°C for axial diode on printed circuit board (PCB), PCB = FR4-.0625 inch (1.59 mm) 1-layer 1-Oz Cu, horizontal, in still air; pads for axial = .092 inch (2.34 mm) diameter, strip = .030 inch (0.76 mm) x 1 inch (25.4 mm) long, lead length L ≤ .187 inch (≤ 4.75 mm); R<sub>PJA</sub> with a defined PCB thermal resistance condition included, is measured at I<sub>O</sub> = 200 mA dc.

<sup>(3)</sup> See figure 7 for thermal impedance curves.

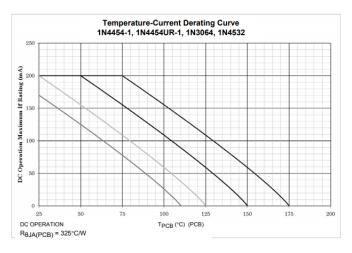


Rev. V2

# **Outline Drawing (DO-34)**



|         |        | Dimensions |       |             |       |
|---------|--------|------------|-------|-------------|-------|
| Types   | Symbol | Inches     |       | Millimeters |       |
|         |        | Min        | Max   | Min         | Max   |
|         | BD     | .050       | .075  | 1.27        | 1.91  |
| 1N4532  | BL     | .080       | .120  | 2.03        | 3.05  |
| (DO-34) | LD     | .018       | .022  | 0.46        | 0.56  |
|         | LL     | 1.000      | 1.500 | 25.40       | 38.10 |


### NOTES:

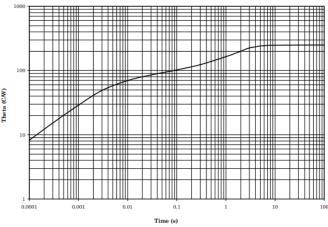
- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.



Rev. V2

### **Graphs**




- NOTES:

  1. All devices are capable of operating at  $\leq T_J$  specified on this curve. Any parallel line to this curve will intersect
- the appropriate power for the desired maximum  $T_J$  allowed. 2. Derate design curve constrained by the maximum junction temperature ( $T_J \le 175^{\circ}C$ ) and current rating
- specified. (See 1.3.)

  3. Derate design curve chosen at  $T_J \le 150^{\circ}C$ , where the maximum temperature of electrical test is performed.
- 4. Derate design curves chosen at  $T_J \le 125^{\circ}C$ , and  $110^{\circ}C$  to show current rating where most users want to limit  $T_J$  in their application.

FIGURE 5. Temperature-current derating graph (axial and MELF).

#### **Maximum Thermal Impedance Plots** 1N4454-1, 1N4532 DO-35 Axial TL = 25°C



R<sub>0JL</sub> = 250°C/W

NOTE:  $Z_{\theta JX} = 70^{\circ}$ C/W maximum at  $t_H = 10$ ms.

FIGURE 7. Thermal impedance (axial leads).



Rev. V2

#### VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.